بهینه سازی تابع روزنبراک:

تابع روزنبراک که در متلب معروف هست در اینجا چنین تعریف می کنیم:

$$f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$
,

و می خواهیم این تابع را تحت محدودیت

$$x_1^2 + x_2^2 \le 1$$

Note Rosenbrock's function is a standard test function in optimization. It has a unique minimum value of 0 attained at the point (1,1). Finding the minimum is a challenge for some algorithms since it has a shallow minimum inside a deeply curved valley.

حال تابع هزينه را تعريف مي كنيم:

```
function f = rosenbrock(x)

f = 100*(x(2) - x(1)^2)^2 + (1 - x(1))^2;
```

حال تابع قيود را چنين تعريف مي كنيم:

```
function [c, ceq] = unitdisk(x)

c = x(1)^2 + x(2)^2 - 1;

ceq = [];
```

حال به مرحله ران کردن برنامه و اجرای آن می رسیم که با استفاده از gui مسئله را حل می کنیم:

که این صفحه با نوشتن optimtool در کامند ویندو ایجاد می شود. حال با تغییرات در صفحه بالا و وارد کردن نام توابع خواهیم داشت:

Solver: Fmincon - Constrained nonlinear minimization				
Algorithm: Active set				
Problem				
Objective function: @rosenbrock				
Derivatives: Approximated by solver ▼				
Start point: [0 0]				
Constraints:				
Linear inequalities: A:	b:			
Linear equalities: Aeq:	beq:			
Bounds: Lower:	Upper:			
Nonlinear constraint function:	@unitdisk			
Derivatives:	Approximated by solver			

و همین طور در قسمت پایین این صفحه گزینه زیر را به iterative تغییر دهید.

☐ Display to command window		
Level of display:	iterative	▼

حال آماده اجرای برنامه هستیم:

که با اجرای آن در همین صفحه gui نتیجه زیر را خواهیم داشت:

Optimization running.

Optimization terminated.

Objective function value: 0.04567571111479972

Optimization terminated: magnitude of directional derivative in search direction less than 2*options.TolFun and maximum constraint violation is less than options.TolCon.

که نتیجه نهایی و نقطه نهایی که مینیمم محلی به دست آمده می باشد خواهد بود:

Final point:		
1	2	
0.786	0.618	

